# Need urgent help with Advanced Maths assignment. Please see attachment for typed questions. 1. For each of the statements below determine whether it is true or false, providing reasons for your answe

### Stuck with a difficult assignment? No time to get your paper done? Feeling confused? If you’re looking for reliable and timely help for assignments, you’ve come to the right place. We promise 100% original, plagiarism-free papers custom-written for you. Yes, we write every assignment from scratch and it’s solely custom-made for you.

Order a Similar Paper Order a Different Paper

Need urgent help with Advanced Maths assignment. Please see attachment for typed questions.

1. For each of the statements below determine whether it is true or false, providing reasons for your answer.

Need urgent help with Advanced Maths assignment. Please see attachment for the typed questions.

For each of the statements below determine whether it is true or false, providing reasons for your answer.

(a) For the real line R with the standard topology and its subset Q of all rational numbers we have Cl(Q) = R. [2 marks]

(b) For the real line R with the standard topology and its subset Q of all rational numbers we have ∂(Q) = R. [2 marks]

(c) Singleton sets always closed in Hausdorff spaces. [2 marks]

2. Let T = {(a,∞) : a ∈ [−∞,∞]}. (Note: when a = −∞ we have (a,∞) = R, while if a = ∞, then (a,∞) = ∅.)

(a) Show that T is a topology on R. [5 marks]

(b) Carefully explain whether T is Hausdorff or not. [3 marks]

3. Let X be a topological space and let K1,K2, . . . ,Km be compact subsets of X. Show that K = K1 ∪ K2 ∪ . . . ∪ Km is compact, too. [5 marks]

4. Let X be a topological space. Prove that Int(A ∩ B) = Int(A) ∩ Int(B) for all subsets A and B of X. [8 marks]

5. Let (X, T ) and (Y, S) be two topological spaces and f, g : X → Y be two continuous maps. Show that, if (Y, S) is Hausdorff, the set Υ = {x ∈ X : f(x) ̸= g(x)} is open. [5 marks]

6. Let (X, T ) be a Hausdorff topological space and let K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . .be an infinite sequence of non-empty compact subsets of X. Show that Kn ̸= ∅. i.e. there exists a point x ∈ X such that x ∈ Kn for all n ≥ 1. [8 marks]

### We’ve proficient writers who can handle both short and long papers, be they academic or non-academic papers, on topics ranging from soup to nuts (both literally and as the saying goes, if you know what we mean). We know how much you care about your grades and academic success. That's why we ensure the highest quality for your assignment. We're ready to help you even in the most critical situation. We're the perfect solution for all your writing needs.

Get a 15% discount on your order using the following coupon code SAVE15

Order a Similar Paper Order a Different Paper